27944 Zip Code Historical Type of Heating Fuel in a House Data
ACS 2010-2014 data
| 27944 Zip Code | North Carolina | U.S. |
Total Housing Units | 4,980, 100% | 3,742,514 | 116,211,092 |
Utility Gas | 165, 3.31%, see rank | 24.68% | 48.85% |
Bottled, Tank, or LP Gas | 1,051, 21.10%, see rank | 8.00% | 4.86% |
Electricity | 3,445, 69.18%, see rank | 60.27% | 36.68% |
Fuel Oil, Kerosene, etc. | 178, 3.57%, see rank | 4.34% | 5.86% |
Coal or Coke | 0, 0.00%, see rank | 0.01% | 0.12% |
Wood | 101, 2.03%, see rank | 2.17% | 2.12% |
Solar Energy | 0, 0.00%, see rank | 0.03% | 0.05% |
Other Fuel | 9, 0.18%, see rank | 0.15% | 0.47% |
No Fuel Used | 31, 0.62%, see rank | 0.35% | 1.00% |
ACS 2008-2012 data
| 27944 Zip Code | North Carolina | U.S. |
Total Housing Units | 4,907, 100% | 3,693,221 | 115,226,802 |
Utility Gas | 213, 4.34%, see rank | 24.97% | 49.42% |
Bottled, Tank, or LP Gas | 1,277, 26.02%, see rank | 8.90% | 5.03% |
Electricity | 2,951, 60.14%, see rank | 58.26% | 35.51% |
Fuel Oil, Kerosene, etc. | 276, 5.62%, see rank | 5.24% | 6.46% |
Coal or Coke | 0, 0.00%, see rank | 0.01% | 0.12% |
Wood | 151, 3.08%, see rank | 2.16% | 2.08% |
Solar Energy | 0, 0.00%, see rank | 0.02% | 0.04% |
Other Fuel | 15, 0.31%, see rank | 0.14% | 0.43% |
No Fuel Used | 24, 0.49%, see rank | 0.29% | 0.90% |
US Census 2000 data
| 27944 Zip Code | North Carolina | U.S. |
Total Housing Units | 4,165, 100% | 3,132,013 | 105,480,101 |
Utility Gas | 109, 2.62%, see rank | 24.19% | 51.22% |
Bottled, Tank, or LP Gas | 1,401, 33.64%, see rank | 12.59% | 6.52% |
Electricity | 1,779, 42.71%, see rank | 48.81% | 30.35% |
Fuel Oil, Kerosene, etc. | 682, 16.37%, see rank | 11.76% | 8.97% |
Coal or Coke | 0, 0.00%, see rank | 0.01% | 0.14% |
Wood | 148, 3.55%, see rank | 2.10% | 1.68% |
Solar Energy | 0, 0.00%, see rank | 0.04% | 0.04% |
Other Fuel | 19, 0.46%, see rank | 0.21% | 0.39% |
No Fuel Used | 27, 0.65%, see rank | 0.28% | 0.69% |
* ACS stands for U.S. Census American Community Survey. According to the U.S. Census, if the date is a range, you can interpret the data as an average of the period of time.